US Market Report for Hernia Repair 2017 - MedCore

Publication ID:
IDR0717024

Publication Date:
July 01, 2017

Pages:
545

Publisher:
iData Research

Region:
USA [1]

$3,995.00

Publication License Type *
☐ Single User License (PDF), $3,995.00

☐ Site License (PDF), $5,993.00

☐ Global License (PDF), $7,990.00

Please choose the suitable license type from above. More details are at given under tab "Report License Types" below.
There are many different types of hernias including inguinal, umbilical, epigastric, spigelian, femoral, and diaphragmatic. The four most common types of hernia are inguinal, umbilical, incisional and epigastric. Spigelian, femoral, and diaphragmatic hernias are much less common in the U.S., and, for this reason, will not be included in the analysis. This report will focus on inguinal hernias and ventral hernias. Ventral hernia is an umbrella term for multiple types of hernia that occur on the ventral abdominal wall, including umbilical, incisional and epigastric hernias. In the United States, inguinal hernias were the most common, followed by ventral hernias. While the total number of both classes of hernia has been increasing in the United States, the frequency of inguinal hernias is decreasing and the frequency of ventral hernias is increasing. The market has been increasing as the general incidence of hernias is increasing in the United States. The total market includes allograft, xenograft and alloplast reinforcement devices used to repair inguinal and ventral hernias. This dominance is misleading as there were not actually more ventral hernia procedures performed; on the contrary, inguinal hernia procedures more than doubled ventral hernia procedures in 2016. The significantly larger market share of ventral hernia repair devices was due to their generally higher ASP, compared to inguinal hernia repair devices.

A hernia is a condition in which part of the intestine bulges through a weak area in the abdominal muscles. Hernias can cause pain and discomfort to the patient, and in more severe cases, can even cause the twisting of the intestine, which would subsequently require removal. Hernia repair involves repositioning the intestine into the body cavity. With over 1 million hernia repair procedures conducted in the U.S. alone in 2016, hernia repair is one of the most common surgical procedures performed in the country. The rising demand for hernia repair is intimately linked to the growing elderly and obese populations, as individuals from these groups are at a high risk of developing a hernia during surgical procedures. The correction of a hernia can be performed using an open or laparoscopic technique.
1.1 RESEARCH SCOPE 12
1.2 IDATA’S 9-STEP METHODOLOGY 12
Step 1: Project Initiation & Team Selection 12
Step 2: Prepare Data Systems and Perform Secondary Research 14
Step 3: Preparation for Interviews & Questionnaire Design 15
Step 4: Performing Primary Research 16
Step 5: Research Analysis: Establishing Baseline Estimates 18
Step 6: Market Forecast and Analysis 19
Step 7: Identify Strategic Opportunities 21
Step 8: Final Review and Market Release 22
Step 9: Customer Feedback and Market Monitoring 23
DISEASE OVERVIEW 24
2.1 BASIC ANATOMY 24
2.2 DISEASE TREATMENTS AND DIAGNOSTICS 25
2.2.1 Breast Cancer 25
2.2.2 Cardiovascular Tissue Repair 26
2.2.3 Dental Soft Tissue Disease 28
2.2.4 Diabetic Foot Ulcer 29
2.2.5 Dural Tears and Cerebrospinal Fluid Leakage Prevention 30
2.2.6 Hernia 31
2.2.7 Peripheral Vasculature Repair 33
2.2.8 Rotator Cuff and Tendon Tearing 34
2.2.9 Traumas and Burns 35
2.2.10 Urinary Incontinence 36
2.3 PATIENT DEMOGRAPHICS 37
2.3.1 Breast Cancer Statistics 37
2.3.2 Cardiovascular Disease Statistics 38
2.3.3 Diabetic Foot Ulcer Statistics 39
2.3.4 Hernia Repair Statistics 40
2.3.5 Periodontitis Statistics 41
2.3.6 Peripheral Vascular Disease (PVD) Statistics 42
2.3.7 Traumatic and Sport-Related Injuries Statistics 43
2.3.8 Urinary Incontinence Statistics 44
PRODUCT ASSESSMENT 45
3.1 PRODUCT PORTFOLIOS 45
3.1.1 Hernia Repair Market 45
3.2 REGULATORY ISSUES AND RECALLS 50
 3.2.1 Acelity (KCI, LifeCells, Systagenix) 50
 3.2.1.1 Skin Repair 50
 3.2.2 Astora Women’s Health (AMS) 50
 3.2.2.1 Vaginal Slings 50
 3.2.3 Baxter Healthcare Corp (Synovis Surgical Innovations, Inc.) 52
 3.2.3.1 Biologic Vascular Patch 52
 3.2.4 C.R. Bard (Davol Inc., subsidiary) 53
 3.2.4.1 Hernia Repair 53
 3.2.4.2 Vaginal Slings 55
 3.2.5 CryoLife, Inc. 56
 3.2.5.1 Biologic Vascular Patch 56
 3.2.6 Ethicon 57
 3.2.6.1 Hernia Repair 57
 3.2.7 Integra LifeScience 57
 3.2.7.1 Dural Repair 57
 3.2.7.2 Skin Repair 58
 3.2.7.3 Sport Medicine and Tendon Reinforcement 59
 3.2.8 LeMaitre Vascular Inc. 59
 3.2.8.1 Biologic Vascular Patch 59
 3.2.9 Organogenesis 60
 3.2.9.1 Skin Repair 60
 3.2.10 Other companies 61
 3.2.10.1 Breast Reconstruction 61
 3.2.10.2 Hernia Repair 62
 3.2.10.3 Dural Repair 62
 3.2.10.4 Dental Soft Tissue 62
3.3 CLINICAL TRIALS 64
 3.3.1 Acelity 64
 3.3.1.1 Breast Reconstruction 64
 3.3.2 Admedus 72
 3.3.2.1 Biologic Vascular Patch 72
 3.3.3 Astora Women’s Health (AMS) 73
 3.3.3.1 Vaginal Slings 73
 3.3.4 B Braun 75
 3.3.4.1 Hernia Repair 75
 3.3.4.2 Dural Repair 75
 3.3.5 Boston Scientific 76
3.3.5.1 Vaginal Slings 76
3.3.6 Cook Medical 78
3.3.6.1 Hernia Repair 78
3.3.7 CorMatrix 80
3.3.7.1 Biologic Vascular Patch 80
3.3.8 CR Bard 84
3.3.8.1 Hernia Repair 84
3.3.8.2 Vaginal Slings 88
3.3.9 CryoLife 89
3.3.9.1 Biologic Vascular Patch 89
3.3.10 Ethicon 91
3.3.10.1 Breast Reconstruction 91
3.3.10.2 Hernia Repair 91
3.3.10.3 Vaginal Slings 95
3.3.11 Geistlich Pharma 96
3.3.11.1 Dental Soft Tissue 96
3.3.12 Integra LifeScience 99
3.3.12.1 Breast Reconstruction 99
3.3.12.2 Dural Repair 100
3.3.12.3 Skin Repair 102
3.3.13 Maquet Cardiovascular 106
3.3.13.1 Biologic Vascular Patch 106
3.3.14 Medtronic 107
3.3.14.1 Hernia Repair 107
3.3.15 MiMedx 110
3.3.15.1 Skin Repair 110
3.3.16 RTI Surgical 111
3.3.16.1 Breast Reconstruction 111
3.3.17 Wright Medical Group (Tornier) 112
3.3.17.1 Sport Medicine and Tendon Reinforcement 112
3.3.18 Xeltis 114
3.3.18.1 Biologic Vascular Patch 114
3.3.19 Other companies 115
3.3.19.1 Breast Reconstruction 115
3.3.19.2 Hernia Repair 119
3.3.19.3 Dural Repair 123
3.3.19.4 Vaginal Slings 125
3.3.19.5 Skin Repair 126
3.3.19.6 Sport Medicine and Tendon Reinforcement 133
3.3.19.7 Dental Soft Tissue 137
Figure 3 25: Class 2 Device Recall Organogenesis Apligraf 60
Figure 3 26: Class 2 Device Recall Organogenesis Apligraf 60
Figure 3 27: Class 2 Device Recall Artoura Breast Tissue Expander 61
Figure 3 28: Class 2 Device Recall Tissue expander Mentor, Mentor Texas, LP 61
Figure 3 29: Class 2 Device Recall CQUR Mesh, Atrium Medical Corporation 62
Figure 3 30: Class 2 Device Recall DuraGuard Dural Repair Patch, Synovis (Baxter) 62
Figure 3 31: Class 2 Device Recall RENOVIX Guided Healing Collagen Membrane 62
Figure 3 32: Class 2 Device Recall CollaGuide Collagen Dental Membrane 63
Figure 3 33: Impact of ADM in Reduction of Surgical Complexity of Breast Reconstructions With Implants (Nava) (Strattice) 64
Figure 3 34: Compare Outcomes Between Two Acellular Dermal Matrices (Alloderm RTU medium, LifeCell vs. Cortiva Allograft Dermis, RTI Surgical®, Inc.) 64
Figure 3 35: Comparison of FlexHD (Ethicon) and Alloderm (Acelity) Outcomes in Breast Reconstructive Surgery 65
Figure 3 36: Reinforcement of Closure of Stoma Site (ROCSS) 65
Figure 3 37: Breast Reconstruction Outcomes With and Without StratticE (BROWSE), UK 65
Figure 3 38: Breast Reconstruction With Acellular Dermal Matrix in the Setting of Breast Cancer Treatment (Strattice) 66
Figure 3 39: SurgiMend® vs. StratticE™ in Direct to Implant Breast Reconstruction- A Prospective Randomized Trial 66
Figure 3 40: Acellular Dermal Matrix in Tissue Expander Breast Reconstruction: A Prospective, Randomized, Clinical Trial Comparing SurgiMend PRS and AlloDerm RTU 67
Figure 3 41: A Comparison of Dermal Autograft to AlloDerm in Breast Reconstruction 67
Figure 3 42: Protexa® (AFS Medical) Versus TiLoopBra® (PFM) in Immediate Breast Reconstruction- A Pilot Study 68
Figure 3 43: Regenerative Tissue Matrix for Breast Reconstruction (AlloDerm) 68
Figure 3 44: Complex Ventral Hernia Repair Using Biologic or Synthetic Mesh (CVHR) 69
Figure 3 45: A Comparison of Fortiva and Strattic Tissue Matrices in Complex, Ventral Hernia Repair 69
Figure 3 46: Biologic Mesh Versus Synthetic Mesh in Repair of Ventral Hernias (ventral hernia) 70
Figure 3 47: Multi-Center Study To Examine The Use Of Flex HD® (Ethicon) And StratticE (Acelity) In The Repair Of Large Abdominal Wall Hernias 70
Figure 3 48: Use of Strattic Mesh in Paraesophageal Hernia Surgery (Strattice) 71
Figure 3 49: Vascular Post Market Review 72
Figure 3 50: Urinary Incontinence Sling: Collection of Long Term Patient Outcomes Following Implantation of AMS Surgical Devices 73
Figure 3 51: Collection of Long Term Patient Outcomes Data Following Implantation of AMS Surgical Devices (CAPTURE) 73
Figure 3 52: Trial Comparing Mini-Arc Precise Pro and the Trans Vaginal Obturator Tape for Stress Urinary Incontinence 74
Figure 3.53: Prophylactic Mesh Implantation After Abdominal Aortic Aneurysm Repair 75
Figure 3.54: Assessment of the Performance of L’Yoplant® ONlay for Duraplasty (LYON) 75
Figure 3.55: Pelvic Organ Prolapse Repair: Multi-center Study of Uphold LITE Versus Native Tissue 76
Figure 3.56: Mid-Urethral Sling Tensioning Trial (MUST) 76
Figure 3.57: Urinary Incontinence Sling: Post Market Study Of Single Incision Sling Versus Transobturator Sling 77
Figure 3.58: Observational Study to Evaluate Ventral Incisional Hernia Repair Using a Biologic Mesh (Cook Biodesign) 78
Figure 3.59: Biologic Versus Synthetic Mesh for Treatment of Paraesophageal Hernia, Biodesign™ Surgisis® Graft and Parietex™ Composite Hiatal Mesh, 78
Figure 3.60: Antimicrobial Hernia Repair Device Clinical Study (AMEX) 79
Figure 3.61: CorMatrix ECM Tricuspid Valve Replacement 80
Figure 3.62: A Post Market Study on the Use of Cormatrix® Cangaroo ECM® (Extracellular Matrix) Envelope (SECURE) 80
Figure 3.63: A Study on the Use of CorMatrix ECM® for Femoral Arterial Reconstruction (PERFORM) 81
Figure 3.64: Epicardial Infarct Repair Using CorMatrix®-ECM®: Clinical Feasibility Study (EIR) 81
Figure 3.65: A Study to Obtain Additional Information on the Use of CorMatrix® CanGaroo ECM® Envelope (JUMP) 82
Figure 3.66: Restore Myocardial Function With CorMatrix® ECM® Particulate (P-ECM) 83
Figure 3.67: XenMatrix™—AB Surgical Graft in Ventral or Incisional Midline Hernias 84
Figure 3.68: Complex Ventral Hernia Repair Using Biologic or Synthetic Mesh (CVHR) 84
Figure 3.69: A Prospective Trial of a Bio-absorbable Mesh in Challenging Laparoscopic Ventral or Incisional Hernia Repair (ATLAS) 85
Figure 3.70: A Prospective, Multi-Center Study of Phasix™ Mesh for Ventral or Incisional Hernia Repair. 85
Figure 3.71: Biologic Mesh Versus Synthetic Mesh in Repair of Ventral Hernias (ventral hernia) 86
Figure 3.72: Prospective Trial Comparing Two Different Polypropylene Meshes for Inguinal Hernias 86
Figure 3.73: Comparison of Two Mesh/Fixation Concepts for Laparoscopic Ventral and Incisional Hernia Repair (Bard Davol Inc, VentraLight and Ethicon, Physiomesh®) 87
Figure 3.74: A Retrospective Study With Prospective Follow-Up of Complex Ventral Hernia Repair Utilizing the AlloMax Surgical Graft (AlloMax) 87
Figure 3.75: Multicentric Comparative Randomized Study of the Single-incision Sling Ajust® Versus Suburethral Transobturator Slings. 88
Figure 3.76: Data Collection Registry of the HeRO Graft for End Stage Renal Disease Patients Receiving Hemodialysis 89
Figure 3.77: Post Market Surveillance Study Evaluating BioFoam Surgical Matrix in Cardiovascular Surgery 89
Figure 3.78: Saphenous Vein Allografts for Coronary Bypass 90
Figure 3.79: Comparison of FlexHD (Ethicon) and Alloderm (Acelity) Outcomes in Breast Reconstructive
Surgery 91
Figure 3 80: International Hernia Mesh Registry (IHMR) 91
Figure 3 81: Prospective Trial Comparing Two Different Polypropylene Meshes for Inguinal Hernias 92
Figure 3 82: Multi-Center Study To Examine The Use Of Flex HD® (Ethicon) And Strattice (Acelity) In The Repair Of Large Abdominal Wall Hernias 92
Figure 3 83: Evaluation of HQ® Matrix Soft Tissue Mesh for the Treatment of Inguinal Hernia 93
Figure 3 84: Study on Ultrapro vs Polypropylene: Early Results From a Multicentric Experience in Surgery for Hernia (SUPERMESH) 93
Figure 3 85: Comparison of Two Mesh/Fixation Concepts for Laparoscopic Ventral and Incisional Hernia Repair (Bard Davol Inc, Ventralight and Ethicon, Physiomesh®) 94
Figure 3 86: The Paediatric EVICEL® Neuro Study 94
Figure 3 87: The EVICEL® Neurosurgery Phase III Study 95
Figure 3 88: Urinary Incontinence Sling: TVT-ABBREVO Versus SERASIS for the Treatment of Female Urinary Stress Incontinence 95
Figure 3 89: A Biotype Enhancing Strategy For The Patient Undergoing Accelerated Orthodontics 96
Figure 3 90: Effect of Mucograft® Seal on Post-extraction Ridge Preservation Using Bone Allograft (Mucograft) 96
Figure 3 91: The Use of Mucograft® to Treat Gingival Recession 97
Figure 3 92: Xenogenous Collagen Matrix Graft With or Without Enamel Matrix Proteins Derived for Root Coverage 97
Figure 3 93: Extraction Socket Management Using Connective Tissue Graft Versus Mucograft® 98
Figure 3 94: A Randomized Controlled Clinical Trial to Evaluate Safety and Effectiveness of CAF + Mucograft® Compared to CAF Alone in Patients With Gingival Recessions (MCT-Recession) 98
Figure 3 95: SurgiMend® vs. Strattice™ in Direct to Implant Breast Reconstruction- A Prospective Randomized Trial 99
Figure 3 96: Evaluating Outcomes of Immediate Breast Reconstruction (POBRAD-M) (POBRAD-M) (SurgiMend) 99
Figure 3 97: Acellular Dermal Matrix in Tissue Expander Breast Reconstruction: A Prospective, Randomized, Clinical Trial Comparing SurgiMend PRS and AlloDerm RTU 100
Figure 3 98: DuraSeal Exact Spine Sealant System Post-Approval Study (DuraSeal PAS) 100
Figure 3 99: Duragen® Secure Post Marketing Clinical Follow-up (PMCF) 101
Figure 3 100: DuraSeal Sealant Post Market Study 101
Figure 3 101: PriMatrix for the Management of Diabetic Foot Ulcers 102
Figure 3 102: Prospective, Comparator, Randomized Study of Allograft Versus Skin Substitute in Non-healing Diabetic Foot Ulcers 102
Figure 3 103: Safety Study to Examine the Systemic Exposure of Granexin® Gel After Topical Application to Diabetic Foot Ulcers 103
Figure 3 104: A Comparison of OASIS Wound Matrix With Approved Dressings for Skin Graft Donor Sites (OASIS) 103
Figure 3 105: Clinical Study to Evaluate Safety and Efficacy of ALLO-ASC-DFU in Patients With Diabetic
Foot Ulcers 104
Figure 3 106: Phase IV Study to Evaluate the Efficacy of AMNIOEXCEL in Diabetic Foot Ulcers 104
Figure 3 107: Study of ReCell® Treating for Diabetic Foot Ulcers 105
Figure 3 108: A Safety and Efficacy Study of INTEGRA® Dermal Regeneration Template for the Treatment of Diabetic Foot Ulcers 105
Figure 3 109: Evaluation of FUSION™ Vascular Graft for Above Knee Targets (PERFECTION) – NOT approved for the US 106
Figure 3 110: Bilateral Laparoscopic Repair of Groin Hernias With One Large Self-fixating Mesh (ProGripTM) (BigWig) 107
Figure 3 111: Comparison of Self-Fixating vs Non-Fixating Hernia Mesh 107
Figure 3 112: The SymCHro - Observational Registry Study for Symbotex™ Composite Mesh in Ventral Hernia Repair (SymCHro) 108
Figure 3 113: ENHANCE: A Prospective EvaluatioN of Permacol™ in the Repair of Complex Abdominal Wall CasEs (ENHANCE) 108
Figure 3 114: A Longitudinal Prospective Outcomes Study of Laparoscopic Abdominal Wall Hernia Repair Using Symbotex™ Composite Mesh 109
Figure 3 115: A Prospective Study in Patients Undergoing Primary Ventral Hernia Repair Using Parietex™ Composite Ventral Patch (Panacea) 109
Figure 3 116: Advanced Wound Dressing: dHACM In the Treatment of Diabetic Foot Ulcers 110
Figure 3 117: Compare Outcomes Between Two Acellular Dermal Matrices (AlloDerm RTU medium, LifeCell vs. Cortiva Allograft Dermis, RTI Surgical®, Inc.) 111
Figure 3 118: BioFiber Scaffold Post-Market Observational Study 112
Figure 3 119: GraftJacket Versus Tendon Interposition for Trapeziometacarpal Osteoarthritis 112
Figure 3 120: Outcomes in Rotator Cuff Repair Using Graft Reinforcement 113
Figure 3 121: Safety and Performance of a Vascular Patch in Pediatric Patients Undergoing Bidirectional Cava-pulmonary Anastomosis 114
Figure 3 122: Autologous Fat Grafting of the Breast in Women With Post Lumpectomy Contour Defects 115
Figure 3 123: Pre-pectoral Breast Reconstruction PART 1 (PreBRec) and PART 2 (PreBRec) 115
Figure 3 124: National, Multicenter PMS Study "Patient Reported Outcome" in Breast Reconstruction Following Mastectomy With TiLOOP Bra (PRO-BRA), PFM Medical 116
Figure 3 125: A Comparison Between Biological (Veritas®) vs Non Biological Mesh (TIGR®) in Immediate Breast Reconstruction 116
Figure 3 126: Feasibility Study of Meso BioMatrix Device for Breast Reconstruction, Kensey Nash Corp. 117
Figure 3 127: Acellular Dermal Matrix in Breast Reconstruction (Adermbrerec) 117
Figure 3 128: The SeriScaffold® Use in Reconstruction Post Market Study for Tissue Support and Repair in Breast Reconstruction Surgery in Europe 118
Figure 3 129: The SERI® Surgical Scaffold Use in Reconstruction Post Market Study for Tissue Support and Repair in Breast Reconstruction Surgery 118
Figure 3 130: Use of Dermal Matrix in Breast Reconstruction, MTF, DermaMatrix 119
Figure 3 131: Trial of Routine Abdominal Wall Closure Versus Reinforcement With TIGR Matrix Onlay (PrevMesh), Novus Scientific 119
Figure 3 132: Laparoscopic Groin Hernia Repair by a 3D ENDO LAP (DynaMesh / FEG Textiltechnik) Visible Mesh With or Without LIQUIBand Fix 8 Mesh Fixation 120
Figure 3 133: Gentrix™ Versus Biological or Prosthetic Mesh, Acell, Inc. 120
Figure 3 134: Miromatrix Biological Mesh for Hiatal Hernia Repair (MIROMESH PM-2), Miromatrix Medical Inc. 121
Figure 3 135: Miromatrix Biological Mesh for Ventral Hernia Repair (MIROMESH PM-1) 121
Figure 3 136: Trial Concerning the Frequency of Parastomal Hernia With or Without a Mesh (STOMAMESH) 121
Figure 3 137: Polypropylene Mesh Versus Polytetrafluoroethylene (PTFE) Mesh in Inguinal Hernia Repair 122
Figure 3 138: Safety Study of MotifMESH (cPTFE) in Abdominal Surgery 122
Figure 3 139: Comparative Study of Safety and Efficacy of Heavyweight and Partially Absorbable Mesh in Inguinal Hernia Repair 122
Figure 3 140: Efficacy and Safety of FS VH S/D 500 S-apr as an Adjunct to Sutured Dural Repair in Cranial Surgery 123
Figure 3 141: Amniotic Membrane in Decompressive Craniectomy to Reduce Scarring, MiMedx 123
Figure 3 142: Study of SyntheCelTM Dura Replacement to Other Dura Replacements 124
Figure 3 143: Altis® 522 Trial - Treatment of Female Stress Urinary Incontinence, Coloplast A/S 125
Figure 3 144: Safety and Efficacy of PVDF (DynaMesh®-SIS Soft) Retropubic Midurethral Slings in Stress Urinary Incontinence in Women 125
Figure 3 145: A Prospective, Randomized Clinical Trial of ECLIPSE PRP™ Wound Biomatrix in Non-Healing Diabetic Foot Ulcers 126
Figure 3 146: A Feasibility Study of the ReGenerCell™ Autologous Cell Harvesting Device for Diabetic Foot Ulcers 126
Figure 3 147: Dehydrated Human Umbilical Cord Allograft in the Management of Diabetic Foot Ulcers 127
Figure 3 148: Effect of Fresh Amniotic Membrane in the Treatment of Diabetic Foot Ulcers 127
Figure 3 149: Efficacy and Safety of Artacent™ for Treatment Resistant Lower Extremity Venous and Diabetic Ulcers (TMArtacent) 128
Figure 3 150: Non-healing Diabetic Foot Ulcers (DFU) Treated With SoC With or Without NEOX®CORD 1K 128
Figure 3 151: The Sorbact® Antimicrobial Dressing in the Holistic Wound Management Of Diabetic Foot Ulcers (Phase III Study) (ADHOC) 129
Figure 3 152: A Comparative Efficacy Study of DermaPure™ to Treat Diabetic Foot Ulcers 129
Figure 3 153: TruSkin®: Study for the Treatment of Chronic Diabetic Foot Ulcers 130
Figure 3 154: NEOX® CORD 1K vs Standard of Care in Non-healing Diabetic Foot Ulcers (CONDUCT I) 130
Figure 3 155: DermACELL in Subjects With Chronic Wounds of the Lower Extremities 131
Figure 3 156: A Comparative Efficacy Study: Treatment for Non-healing Diabetic Foot Ulcers 131
Figure 3 157: A Longitudinal Study to Evaluate an Extracellular Matrix (MatriStem®) for the Treatment of Diabetic Foot Ulcers (M-S-DFU-RCT) 132
Figure 3 158: Grafix® DFU: Open-Label Extension Option to Evaluate Safety & Efficacy of Grafix® for Chronic Diabetic Foot Ulcers (DFU) 132
Figure 3 159: Mesenchymal Stem Cell Augmentation in Patients Undergoing Arthroscopic Rotator Cuff Repair 133
Figure 3 160: COMPREHENSIVE® REVERSE SHOULDER Mini BasePlate 133
Figure 3 161: Suture Anchor Comparison in Rotator Cuff Repairs 134
Figure 3 162: Allograft Reconstruction of Massive Rotator Cuff Tears vs Partial Repair Alone 134
Figure 3 163: Evaluation of the Healicoil Suture Anchor for Rotator Cuff Repair 135
Figure 3 164: Rotator Cuff Reconstruction With Xenologous Dermis-patch Augmentation and ACP® - Injection 135
Figure 3 165: Musculotendinous Tissue Repair Unit and Reinforcement (MTURR) 136
Figure 3 166: Pilot Study to Evaluate the Restore Orthobiologic Implant in Rotator Cuff Tear Repair 136
Figure 3 167: Prospective Study on Artelon® Tissue Reinforcement in Repair of Chronic Ruptures and Re-ruptures of the Achilles Tendon 137
Figure 3 168: Esthetic Outcomes Following Immediate Implant Combine With Soft Tissue Augmentation 137
Figure 3 169: Implant-Abutment Interface Design on Bone and Soft Tissue Levels Around Implants Placed Using Different Transcrestal Sinus Floor Elevation 138
Figure 3 170: Evaluation of Zimmer Puros® Allograft vs. Creos™ Allograft for Alveolar Ridge Preservation, Zimmer Biomet 138
Figure 3 171: A Volumetric Analysis of Soft and Hard Tissue Healing for Ridge Preservation and Socket Seal After Tooth Extraction 139
Figure 3 172: Ridge Preservation Following Tooth Extraction Using Two Mineralized Cancellous Bone Allografts, Zimmer Biomet 139
Figure 3 173: Evaluation of Subepithelial Connective Tissue Graft Versus Acellular Dermal Matrix With Tunnel Technique in Treatment of Multiple Gingival Recessions 140
Figure 3 174: The Clinical Effect of Implant Placement With a Simultaneous Soft Tissue Allograft 140
Figure 3 175: Collagen Matrix With Tunnel Technique Compared to CTG for the Treatment of Periodontal Recessions 141
Figure 3 176: Comparison of the Human Acellular Vessel (HAV) With ePTFE Grafts as Conduits for Hemodialysis 142
Figure 3 177: Feasibility Study of the TGI Adipose-derived Stromal Cell (ASC)-Coated ePTFE Vascular Graft (TGI-PVG-IDE) 142
Figure 3 178: Clinical Study of POSS-PCU Vascular Grafts for Vascular Access 143
Figure 3 179: Safety and Efficacy Study of Amniotic Membrane Patch to Treat Postoperative Atrial
Fibrillation 143
Figure 3 180: Trial Comparison of Accuseal and Bovine Pericardial Patch During Endarterectomy 144
Figure 4 1: Hernia Repair Market by Segment, U.S., 2013 – 2023 (US$M) 148
Figure 4 2: Total Ventral Hernia Repair Market, U.S., 2013 - 2023 152
Figure 4 3: Allograft Ventral Hernia Repair Market, U.S., 2013 – 2023 154
Figure 4 4: Xenograft Ventral Hernia Repair Market, U.S., 2013 – 2023 156
Figure 4 5: Total Alloplast Ventral Hernia Repair Market, U.S., 2013 – 2023 159
Figure 4 6: Composite Alloplast Market, U.S., 2013 – 2023 161
Figure 4 7: Uncoated Alloplast Market, U.S., 2013 – 2023 162
Figure 4 8: Total Inguinal Hernia Repair Market, U.S., 2013 – 2023 164
Figure 4 9: Allograft Inguinal Hernia Repair Market, U.S., 2013 – 2023 166
Figure 4 10: Xenograft Inguinal Hernia Repair Market, U.S., 2013 – 2023 168
Figure 4 11: Total Alloplast Inguinal Hernia Repair Market, U.S., 2013 – 2023 171
Figure 4 12: Composite Alloplast Market, U.S., 2013 – 2023 172
Figure 4 13: Uncoated Alloplast Market, U.S., 2013 – 2023 173
Figure 4 14: Drivers and Limiters, Hernia Repair Market, U.S., 2016 177
Figure 4 15: Leading Competitors, Hernia Repair Market, U.S., 2016 184
Figure 6 1: Press Release Summary 189

Companies Mentioned:
LifeCell
Organogenesis
C.R. Bard
Ethicon
Covidien
Arthrex
ASTORA
Wright Medical
Integra LifeSciences
Smith & Nephew
MiMedx
Boston Scientific
Systagenix
BioHorizons
Atrium Medical
Coloplast
Stryker
Cook Medical
Johnson & Johnson
Osiris
Soluble Systems
Synovis/Baxter
KCI
RTI Biologics
Geistlich
TEI
Zimmer Biomet
ACell
Aesculap/B. Braun
Gore Medical
Medtronic
Dentsply
Others include: Medline, MTF, WL Gore, Tutogen, Novus Scientific, Ariste Medical

License Types:

Single User License (PDF)

- This license allows for use of a publication by one person.
- This person may print out a single copy of the publication.
- This person can include information given in the publication in presentations and internal reports by providing full copyright credit to the publisher.
- This person cannot share the publication (or any information contained therein) with any other person or persons.
- Unless a Enterprise License is purchased, a Single User License must be purchased for every person that wishes to use the publication within the same organization.
- Customers who infringe these license terms are liable for a Global license fee.

Site License (PDF)*

- This license allows for use of a publication by all users within one corporate location, e.g. a regional office.
- These users may print out a single copy of the publication.
- These users can include information given in the publication in presentations and internal reports by providing full copyright credit to the publisher.
- These users cannot share the publication (or any information contained therein) with any other person or persons outside the corporate location for which the publication is purchased.
- Unless a Enterprise License is purchased, a Site User License must be purchased for every corporate location by an organization that wishes to use the publication within the same organization.
- Customers who infringe these license terms are liable for a Global license fee.
Global License (PDF)*

- This license allows for use of a publication by unlimited users within the purchasing organization e.g. all employees of a single company.
- Each of these people may use the publication on any computer, and may print out the report, but may not share the publication (or any information contained therein) with any other person or persons outside of the organization.
- These employees of purchasing organization can include information given in the publication in presentations and internal reports by providing full copyright credit to the publisher.

*If Applicable.
What is drug pipeline research?
March 20

How to use market research to bring your idea to life?
March 11

How to gain business insights using syndicated market research?
March 10

Source URL: https://www.drugpipeline.net/idata-research/us-market-report-hernia-repair-2017-medcore
Links
[1] https://www.drugpipeline.net/region/usa