US Market Report for Dural Repair 2017 - MedCore

Publication ID:
IDR0717025

Publication Date:
July 01, 2017

Pages:
526

Publisher:
iData Research

Region:
USA [1]

$3,495.00

Publication License Type *
○ Single User License (PDF), $3,495.00

○ Site License (PDF), $5,243.00

○ Global License (PDF), $6,990.00

Please choose the suitable license type from above. More details are at given under tab “Report License Types” below.

Add to cart

Description:
General Report Contents
Dural defects may be repaired either by suturing or applying a dural graft to prevent CSF leaks and facilitate healing. Occasionally, dural tears cannot be closed primarily and dural grafts must be used. Harvested autologous collagenous membrane grafts, such as the pericranium, fascia lata or temporal fascia are routinely used for repair of the dura mater. These native collagen grafts are immunologically tolerated, and reconstituted with host cells and supporting vasculature, eventually becoming completely remodeled. The biological response to autologous collagen membrane grafts in dural repair is ideal based on the fact that native tissue is used. However, sufficient quantities may not always be available, and a second skin incision is required for harvesting some tissue sources like the fascia lata. This could potentially increase the morbidity of the procedure and of course increases the total length of the surgery. Non-autologous dural repair products are alternatives to tissue being removed and grafted from another location in the patient’s body. As such, non-human animal tissue-derived dural patches (xenografts) are an increasingly common form of device used for dural repair owing to their versatility, competitive pricing and outstanding performance. This is followed by the use of grafts composed of synthetic materials (alloplasts), which regularly consist of expanded polytetrafluoroethylene (ePTFE), polyester urethane and polyglactin. This synthetic mesh is the least expensive option available, at the cost of an increased likelihood of postoperative complications. Human tissue-derived products (allografts) perform much better than synthetic products, but are used rarely in dural repair mainly due to the high cost associated with their use.

The dura mater is a tough, fibrous membrane that surrounds and protects the tissues of the brain and spinal cord. Dural repair is primarily performed for head and spinal injuries where a laceration has occurred to the dura, and for neurosurgical procedures in which the dura is required to be opened or removed to gain access to the bones or delicate tissues within. In both cases, effective dural closure is imperative to prevent cerebrospinal fluid (CSF) leakage and permit proper and expeditious wound healing. Since CSF leaks often result in extra time and cost associated with patient care, dural repair performed with appropriate devices is integral for significant savings for surgeons and patients.
MARKETS INCLUDED 10
KEY REPORT UPDATES 11
VERSION HISTORY 11
RESEARCH METHODOLOGY 12
1.1 RESEARCH SCOPE 12
1.2 IDATA’S 9-STEP METHODOLOGY 12
Step 1: Project Initiation & Team Selection 12
Step 2: Prepare Data Systems and Perform Secondary Research 14
Step 3: Preparation for Interviews & Questionnaire Design 15
Step 4: Performing Primary Research 16
Step 5: Research Analysis: Establishing Baseline Estimates 18
Step 6: Market Forecast and Analysis 19
Step 7: Identify Strategic Opportunities 21
Step 8: Final Review and Market Release 22
Step 9: Customer Feedback and Market Monitoring 23
DISEASE OVERVIEW 24
2.1 BASIC ANATOMY 24
2.2 DISEASE TREATMENTS AND DIAGNOSTICS 25
 2.2.1 Breast Cancer 25
 2.2.2 Cardiovascular Tissue Repair 26
 2.2.3 Dental Soft Tissue Disease 28
 2.2.4 Diabetic Foot Ulcer 29
 2.2.5 Dural Tears and Cerebrospinal Fluid Leakage Prevention 30
 2.2.6 Hernia 31
 2.2.7 Peripheral Vasculature Repair 33
 2.2.8 Rotator Cuff and Tendon Tearing 34
 2.2.9 Traumas and Burns 35
 2.2.10 Urinary Incontinence 36
2.3 PATIENT DEMOGRAPHICS 37
 2.3.1 Breast Cancer Statistics 37
 2.3.2 Cardiovascular Disease Statistics 38
 2.3.3 Diabetic Foot Ulcer Statistics 39
 2.3.4 Hernia Repair Statistics 40
 2.3.5 Periodontitis Statistics 41
 2.3.6 Peripheral Vascular Disease (PVD) Statistics 42
 2.3.7 Traumatic and Sport-Related Injuries Statistics 43
 2.3.8 Urinary Incontinence Statistics 44
PRODUCT ASSESSMENT 45
3.1 PRODUCT PORTFOLIOS 45
 3.1.1 Dural Repair Market 45
3.2 REGULATORY ISSUES AND RECALLS 49
3.2.1 Acelity (KCI, LifeCells, Systagenix) 49
 3.2.1.1 Skin Repair 49
3.2.2 Astora Women's Health (AMS) 49
 3.2.2.1 Vaginal Slings 49
3.2.3 Baxter Healthcare Corp (Synovis Surgical Innovations, Inc.) 51
 3.2.3.1 Biologic Vascular Patch 51
3.2.4 C.R. Bard (Davol Inc., subsidiary) 52
 3.2.4.1 Hernia Repair 52
 3.2.4.2 Vaginal Slings 54
3.2.5 CryoLife, Inc. 55
 3.2.5.1 Biologic Vascular Patch 55
3.2.6 Ethicon 56
 3.2.6.1 Hernia Repair 56
3.2.7 Integra LifeScience 56
 3.2.7.1 Dural Repair 56
 3.2.7.2 Skin Repair 57
 3.2.7.3 Sport Medicine and Tendon Reinforcement 58
3.2.8 LeMaitre Vascular Inc. 58
 3.2.8.1 Biologic Vascular Patch 58
3.2.9 Organogenesis 59
 3.2.9.1 Skin Repair 59
3.2.10 Other companies 60
 3.2.10.1 Breast Reconstruction 60
 3.2.10.2 Hernia Repair 61
 3.2.10.3 Dural Repair 61
 3.2.10.4 Dental Soft Tissue 61
3.3 CLINICAL TRIALS 63
3.3.1 Acelity 63
 3.3.1.1 Breast Reconstruction 63
 3.3.1.2 Hernia Repair 68
3.3.2 Admedus 71
 3.3.2.1 Biologic Vascular Patch 71
3.3.3 Astora Women's Health (AMS) 72
 3.3.3.1 Vaginal Slings 72
3.3.4 B Braun 74
 3.3.4.1 Hernia Repair 74
 3.3.4.2 Dural Repair 74
3.3.5 Boston Scientific 75
 3.3.5.1 Vaginal Slings 75
3.3.6 Cook Medical 77
3.3.6.1 Hernia Repair 77
3.3.7 CorMatrix 79
3.3.7.1 Biologic Vascular Patch 79
3.3.8 CR Bard 83
3.3.8.1 Hernia Repair 83
3.3.8.2 Vaginal Slings 87
3.3.9 CryoLife 88
3.3.9.1 Biologic Vascular Patch 88
3.3.10 Ethicon 90
3.3.10.1 Breast Reconstruction 90
3.3.10.2 Hernia Repair 90
3.3.10.3 Vaginal Slings 94
3.3.11 Geistlich Pharma 95
3.3.11.1 Dental Soft Tissue 95
3.3.12 Integra LifeScience 98
3.3.12.1 Breast Reconstruction 98
3.3.12.2 Dural Repair 99
3.3.12.3 Skin Repair 101
3.3.13 Maquet Cardiovascular 105
3.3.13.1 Biologic Vascular Patch 105
3.3.14 Medtronic 106
3.3.14.1 Hernia Repair 106
3.3.15 MiMedx 109
3.3.15.1 Skin Repair 109
3.3.16 RTI Surgical 110
3.3.16.1 Breast Reconstruction 110
3.3.17 Wright Medical Group (Tornier) 111
3.3.17.1 Sport Medicine and Tendon Reinforcement 111
3.3.18 Xeltis 113
3.3.18.1 Biologic Vascular Patch 113
3.3.19 Other companies 114
3.3.19.1 Breast Reconstruction 114
3.3.19.2 Hernia Repair 118
3.3.19.3 Dural Repair 122
3.3.19.4 Vaginal Slings 124
3.3.19.5 Skin Repair 125
3.3.19.6 Sport Medicine and Tendon Reinforcement 132
3.3.19.7 Dental Soft Tissue 136
3.3.19.8 Biologic Vascular Patch 141
Figure 1 9: Key Report Updates 11
Figure 1 10: Version History 11
Figure 3 1: Dural Repair Market Products by Company (1 of 2) 47
Figure 3 2: Dural Repair Market Products by Company (2 of 2) 48
Figure 3 3: Class 2 Device Recall CelluTome, KCI Inc. 49
Figure 3 4: Class 2 Device Recall: MiniArc Pro Single incision Sling System, Astora 49
Figure 3 5: Class 2 Device Recall: Advance"Male Sling System, American Medical Systems, Inc. 50
Figure 3 6: Class 2 Device Recall: AMS Monarc Subfascial Hammock with Tensioning Suture, American Medical Systems, Inc. 50
Figure 3 7: Class 2 Device Recall: AMS 800 Urinary Control System, American Medical Systems, Inc. 50
Figure 3 8: Class 2 Device Recall Synovis VASCUGUARD Peripheral Vascular Patch 51
Figure 3 9: Class 1 Device Recall VASCUGUARD Peripheral Vascular Patch 51
Figure 3 10: Class 2 Device Recall Vascu Guard Peripheral Vascular Patch 51
Figure 3 11: Class 2 Device Recall Bard PerFix Light Plug 52
Figure 3 12: Class 2 Device Recall Composix LP with Echo 52
Figure 3 13: Class 2 Device Recall Bard VentraLight ST Mesh 53
Figure 3 14: MAUDE Adverse Event Reports: C.R. BARD, Inc. 54
Figure 3 15: Class 2 Device Recall CryoPatch SG 55
Figure 3 16: Class 2 Device Recall Surgical mesh, PhysioMesh 56
Figure 3 17: Class 2 Class 2 Device Recall Ethicon Inc. 56
Figure 3 18: Class 2 Device Recall DuraGen XS Dural Regeneration Matrix 56
Figure 3 19: Class 2 Device Recall DuraGen Dural Regeneration Matrix 57
Figure 3 20: Class 2 Device Recall Integra Meshed Dermal Regeneration Template 57
Figure 3 21: Class 2 Device Recall Integra, Flowable Wound Matrix 57
Figure 3 22: Class 2 Device Recall Integra 58
Figure 3 23: Class 1 Device Recall LeMaitre Albograft, LeMaitre Vascular Inc. 58
Figure 3 24: Class 2 Device Recall Organogenesis Apligraf 59
Figure 3 25: Class 2 Device Recall Organogenesis Apligraf 59
Figure 3 26: Class 2 Device Recall Artoura Breast Tissue Expander 60
Figure 3 27: Class 2 Device Recall Tissue expander Mentor, Mentor Texas, LP 60
Figure 3 28: Class 2 Device Recall CQUR Mesh, Atrium Medical Corporation 61
Figure 3 29: Class 2 Device Recall DuraGuard Dural Repair Patch, Synovis (Baxter) 61
Figure 3 30: Class 2 Device Recall RENOVIX Guided Healing Collagen Membrane 61
Figure 3 31: Class 2 Device Recall CollaGuide Collagen Dental Membrane 62
Figure 3 32: Impact of ADM in Reduction of Surgical Complexity of Breast Reconstructions With Implants (Nava) (Strattice) 63
Figure 3 33: Compare Outcomes Between Two Acellular Dermal Matrices (AlloDerm RTU medium, LifeCell vs. Cortiva Allograft Dermis, RTI Surgical®, Inc.) 63
Figure 3 34: Comparison of FlexHD (Ethicon) and AlloDerm (Acelity)Outcomes in Breast Reconstructive Surgery 64
Figure 3.35: Reinforcement of Closure of Stoma Site (ROCSS) 64
Figure 3.36: Breast Reconstruction Outcomes With and Without Strattice® (BROWSE), UK 64
Figure 3.37: Breast Reconstruction With Acellular Dermal Matrix in the Setting of Breast Cancer Treatment (Strattice) 65
Figure 3.38: SurgiMend® vs. Strattice™ in Direct to Implant Breast Reconstruction- A Prospective Randomized Trial 65
Figure 3.39: Acellular Dermal Matrix in Tissue Expander Breast Reconstruction: A Prospective, Randomized, Clinical Trial Comparing SurgiMend PRS and AlloDerm RTU 66
Figure 3.40: A Comparison of Dermal Autograft to AlloDerm in Breast Reconstruction 66
Figure 3.41: Protexa® (AFS Medical) Versus TiLoopBra® (PFM) in Immediate Breast Reconstruction- A Pilot Study 67
Figure 3.42: Regenerative Tissue Matrix for Breast Reconstruction (AlloDerm) 67
Figure 3.43: Complex Ventral Hernia Repair Using Biologic or Synthetic Mesh (CVHR) 68
Figure 3.44: A Comparison of Fortiva and Strattice Tissue Matrices in Complex, Ventral Hernia Repair 68
Figure 3.45: Biologic Mesh Versus Synthetic Mesh in Repair of Ventral Hernias (ventral hernia) 69
Figure 3.46: Multi-Center Study To Examine The Use Of Flex HD® (Ethicon) And Strattice (Acelity) In The Repair Of Large Abdominal Wall Hernias 69
Figure 3.47: Use of Strattice Mesh in Paraesophageal Hernia Surgery (Strattice) 70
Figure 3.48: Vascular Post Market Review 71
Figure 3.49: Urinary Incontinence Sling: Collection of Long Term Patient Outcomes Following Implantation of AMS Surgical Devices 72
Figure 3.50: Collection of Long Term Patient Outcomes Data Following Implantation of AMS Surgical Devices (CAPTURE) 72
Figure 3.51: Trial Comparing Mini-Arc Precise Pro and the Trans Vaginal Obturator Tape for Stress Urinary Incontinence 73
Figure 3.52: Prophylactic Mesh Implantation After Abdominal Aortic Aneurysm Repair 74
Figure 3.53: Assessment of the Performance of LYoplant® ONlay for Duraplasty (LYON) 74
Figure 3.54: Pelvic Organ Prolapse Repair: Multi-center Study of Uphold LITE Versus Native Tissue 75
Figure 3.55: Mid-Urethral Sling Tensioning Trial (MUST) 75
Figure 3.56: Urinary Incontinence Sling: Post Market Study Of Single Incision Sling Versus Transobturator Sling 76
Figure 3.57: Observational Study to Evaluate Ventral Incisional Hernia Repair Using a Biologic Mesh (Cook Biodesign) 77
Figure 3.58: Biologic Versus Synthetic Mesh for Treatment of Paraesophageal Hernia, Biodesign™ Surgisis® Graft and Parietex™ Composite Hiatal Mesh, 77
Figure 3.59: Antimicrobial Hernia Repair Device Clinical Study (AMEX) 78
Figure 3.60: CorMatrix ECM Tricuspid Valve Replacement 79
Figure 3.61: A Post Market Study on the Use of Cormatrix® Cangaroo ECM® (Extracellular Matrix) Envelope (SECURE) 79
Figure 3 62: A Study on the Use of CorMatrix ®ECM® for Femoral Arterial Reconstruction (PERFORM) 80
Figure 3 63: Epicardial Infarct Repair Using CorMatrix®-ECM: Clinical Feasibility Study (EIR) 80
Figure 3 64: A Study to Obtain Additional Information on the Use of CorMatrix® CanGaroo ECM® Envelope (JUMP) 81
Figure 3 65: Restore Myocardial Function With CorMatrix® ECM® Particulate (P-ECM) 82
Figure 3 66: XenMatrix™ AB Surgical Graft in Ventral or Incisional Midline Hernias 83
Figure 3 67: Complex Ventral Hernia Repair Using Biologic or Synthetic Mesh (CVHR) 83
Figure 3 68: A Prospective Trial of a Bio-absorbable Mesh in Challenging Laparoscopic Ventral or Incisional Hernia Repair (ATLAS) 84
Figure 3 69: A Prospective, Multi-Center Study of Phasix™ Mesh for Ventral or Incisional Hernia Repair. 84
Figure 3 70: Biologic Mesh Versus Synthetic Mesh in Repair of Ventral Hernias (ventral hernia) 85
Figure 3 71: Prospective Trial Comparing Two Different Polypropylene Meshes for Inguinal Hernias 85
Figure 3 72: Comparison of Two Mesh/Fixation Concepts for Laparoscopic Ventral and Incisional Hernia Repair (Bard Davol Inc, Ventralight and Ethicon, Physiomesh®) 86
Figure 3 73: A Retrospective Study With Prospective Follow-Up of Complex Ventral Hernia Repair Utilizing the AlloMax Surgical Graft (AlloMax) 86
Figure 3 74: Multicentric Comparative Randomized Study of the Single-incision Sling Ajust® Versus Suburethral Transobturator Slings. 87
Figure 3 75: Data Collection Registry of the HeRO Graft for End Stage Renal Disease Patients Receiving Hemodialysis 88
Figure 3 76: Post Market Surveillance Study Evaluating BioFoam Surgical Matrix in Cardiovascular Surgery 88
Figure 3 77: Saphenous Vein Allografts for Coronary Bypass 89
Figure 3 78: Comparison of FlexHD (Ethicon) and Alloderm (Acelity)Outcomes in Breast Reconstructive Surgery 90
Figure 3 79: International Hernia Mesh Registry (IHMRR) 90
Figure 3 80: Prospective Trial Comparing Two Different Polypropylene Meshes for Inguinal Hernias 91
Figure 3 81: Multi-Center Study To Examine The Use Of Flex HD® (Ethicon) And Strattice (Acelity) In The Repair Of Large Abdominal Wall Hernias 91
Figure 3 82: Evaluation of HQ® Matrix Soft Tissue Mesh for the Treatment of Inguinal Hernia 92
Figure 3 83: Study on Ultrapro vs Polypropylene: Early Results From a Multicentric Experience in Surgery for Hernia (SUPERMESH) 92
Figure 3 84: Comparison of Two Mesh/Fixation Concepts for Laparoscopic Ventral and Incisional Hernia Repair (Bard Davol Inc, Ventralight and Ethicon, Physiomesh®) 93
Figure 3 85: The Paediatric EVICEL® Neuro Study 93
Figure 3 86: The EVICEL® Neurosurgery Phase III Study 94
Figure 3 87: Urinary Incontinence Sling: TVT-ABREVO Versus SERASIS for the Treatment of Female Urinary Stress Incontinence 94
Figure 3.88: A Biotype Enhancing Strategy For The Patient Undergoing Accelerated Orthodontics 95
Figure 3.89: Effect of Mucograft® Seal on Post-extraction Ridge Preservation Using Bone Allograft (Mucograft) 95
Figure 3.90: The Use of Mucograft® to Treat Gingival Recession 96
Figure 3.91: Xenogenous Collagen Matrix Graft With or Without Enamel Matrix Proteins Derivative for Root Coverage 96
Figure 3.92: Extraction Socket Management Using Connective Tissue Graft Versus Mucograft® 97
Figure 3.93: A Randomized Controlled Clinical Trial to Evaluate Safety and Effectiveness of CAF + Mucograft® Compared to CAF Alone in Patients With Gingival Recessions (MCT-Recession) 97
Figure 3.94: SurgiMend® vs. Strattice™ in Direct to Implant Breast Reconstruction- A Prospective Randomized Trial 98
Figure 3.95: Evaluating Outcomes of Immediate Breast Reconstruction (POBRAD-M) (POBRAD-M) (SurgiMend) 98
Figure 3.96: Acellular Dermal Matrix in Tissue Expander Breast Reconstruction: A Prospective, Randomized, Clinical Trial Comparing SurgiMend PRS and AlloDerm RTU 99
Figure 3.97: DuraSeal Exact Spine Sealant System Post-Approval Study (DuraSeal PAS) 99
Figure 3.98: Duragen® Secure Post Marketing Clinical Follow-up (PMCF) 100
Figure 3.99: DuraSeal Sealant Post Market Study 100
Figure 3.100: PriMatrix for the Management of Diabetic Foot Ulcers 101
Figure 3.101: Prospective, Comparative, Randomized Study of Allograft Versus Skin Substitute in Non-healing Diabetic Foot Ulcers 101
Figure 3.102: Safety Study to Examine the Systemic Exposure of Granexin® Gel After Topical Application to Diabetic Foot Ulcers 102
Figure 3.103: A Comparison of OASIS Wound Matrix With Approved Dressings for Skin Graft Donor Sites (OASIS) 102
Figure 3.104: Clinical Study to Evaluate Safety and Efficacy of ALLO-ASC-DFU in Patients With Diabetic Foot Ulcers 103
Figure 3.105: Phase IV Study to Evaluate the Efficacy of AMNIOEXCEL in Diabetic Foot Ulcers 103
Figure 3.106: Study of ReCell® Treating for Diabetic Foot Ulcers 104
Figure 3.107: A Safety and Efficacy Study of INTEGRA® Dermal Regeneration Template for the Treatment of Diabetic Foot Ulcers 104
Figure 3.108: Evaluation of FUSION™ Vascular Graft for Above Knee Targets (PERFECTION) – NOT approved for the US 105
Figure 3.109: Bilateral Laparoscopic Repair of Groin Hernias With One Large Self-fixating Mesh (ProGripTM) (BigWig) 106
Figure 3.110: Comparison of Self-Fixating vs Non-Fixating Hernia Mesh 106
Figure 3.111: The SymCHro - Observational Registry Study for Symbotex™ Composite Mesh in Ventral Hernia Repair (SymCHro) 107
Figure 3.112: ENHANCE: A Prospective EvaluatioN of Permacol™ in The Repair of Complex Abdominal Wall CasEs (ENHANCE) 107
Figure 3 113: A Longitudinal Prospective Outcomes Study of Laparoscopic Abdominal Wall Hernia Repair Using Symbotex™ Composite Mesh 108

Figure 3 114: A Prospective Study in Patients Undergoing Primary Ventral Hernia Repair Using Parietex™ Composite Ventral Patch (Panacea) 108

Figure 3 115: Advanced Wound Dressing: dHACM In the Treatment of Diabetic Foot Ulcers 109

Figure 3 116: Compare Outcomes Between Two Acellular Dermal Matrices (Alloderm RTU medium, LifeCell vs. Cortiva Allograft Dermis, RTI Surgical®, Inc.) 110

Figure 3 117: BioFiber Scaffold Post-Market Observational Study 111

Figure 3 118: GraftJacket Versus Tendon Interposition for Trapeziometacarpal Osteoarthritis 111

Figure 3 119: Outcomes in Rotator Cuff Repair Using Graft Reinforcement Bidirectional Cava-pulmonary Anastomosis 113

Figure 3 120: Safety and Performance of a Vascular Patch in Pediatric Patients Undergoing Autologous Fat Grafting of the Breast in Women With Post Lumpectomy Contour Defects 114

Figure 3 121: Pre-pectoral Breast Reconstruction PART 1 (PreBRec) and PART 2 (PreBRec) 114

Figure 3 122: National, Multicenter PMS Study "Patient Reported Outcome" in Breast Reconstruction Following Mastectomy With TiLOOP Bra (PRO-BRA), PFM Medical 115

Figure 3 123: A Comparison Between Biological (Veritas®) vs Non Biological Mesh (TIGR®) in Immediate Breast Reconstruction 115

Figure 3 124: Feasibility Study of Meso BioMatrix Device for Breast Reconstruction, Kensey Nash Corp. 116

Figure 3 125: The SeriScaffold® Use in Reconstruction Post Market Study for Tissue Support and Repair in Breast Reconstruction Surgery in Europe 117

Figure 3 126: The SERI® Surgical Scaffold Use in Reconstruction Post Market Study for Tissue Support and Repair in Breast Reconstruction Surgery 117

Figure 3 127: Use of Dermal Matrix in Breast Reconstruction, MTF, DermaMatrix 118

Figure 3 128: Trial of Routine Abdominal Wall Closure Versus Reinforcement With TIGR Matrix Onlay (PrevMesh), Novus Scientific 118

Figure 3 129: Laparoscopic Groin Hernia Repair by a 3D ENDOLAP (DynaMesh / FEG Textiltechnik) Visible Mesh With or Without LiquiBand Fix 8 Mesh Fixation 119

Figure 3 130: Gentrix™ Versus Biological or Prosthetic Mesh, Acell, Inc. 119

Figure 3 131: Miromatrix Biological Mesh for Hiatal Hernia Repair (MIROMESH PM-2), Miromatrix Medical Inc. 120

Figure 3 132: Miromatrix Biological Mesh for Ventral Hernia Repair (MIROMESH PM-1) 120

Figure 3 133: Trial Concerning the Frequency of Parastomal Hernia With or Without a Mesh (STOMAMESH) 120

Figure 3 134: Polypropylene Mesh Versus Polytetrafluoroethylene (PTFE) Mesh in Inguinal Hernia Repair 121

Figure 3 135: Safety Study of MotifMESH (cPTFE) in Abdominal Surgery 121
Figure 3 138: Comparative Study of Safety and Efficacy of Heavyweight and Partially Absorbable Mesh in Inguinal Hernia Repair 121
Figure 3 139: Efficacy and Safety of FS VH S/D 500 S-apr as an Adjunct to Sutured Dural Repair in Cranial Surgery 122
Figure 3 140: Amniotic Membrane in Decompressive Craniectomy to Reduce Scarring, MiMedx 122
Figure 3 141: Study of SyntheCeI™ Dura Replacement to Other Dura Replacements 123
Figure 3 142: Altis® 522 Trial - Treatment of Female Stress Urinary Incontinence, Coloplast A/S 124
Figure 3 143: Safety and Efficacy of PVDF (DynaMesh®-SIS Soft) Retropubic Midurethral Slings in Stress Urinary Incontinence in Women 124
Figure 3 144: A Prospective, Randomized Clinical Trial of ECLIPSE PRP™ Wound Biomatrix in Non-Healing Diabetic Foot Ulcers 125
Figure 3 145: A Feasibility Study of the ReGenerCell™ Autologous Cell Harvesting Device for Diabetic Foot Ulcers 125
Figure 3 146: Dehydrated Human Umbilical Cord Allograft in the Management of Diabetic Foot Ulcers 126
Figure 3 147: Effect of Fresh Amniotic Membrane in the Treatment of Diabetic Foot Ulcers 126
Figure 3 148: Efficacy and Safety of Artacent™ for Treatment Resistant Lower Extremity Venous and Diabetic Ulcers (TMArtacent) 127
Figure 3 149: Non-healing Diabetic Foot Ulcers (DFU) Treated With SoC With or Without NEOX®CORD 1K 127
Figure 3 150: The Sorbact® Antimicrobial Dressing in the Holistic Wound Management Of Diabetic Foot Ulcers (Phase III Study) (ADHOC) 128
Figure 3 151: A Comparative Efficacy Study of DermaPure™ to Treat Diabetic Foot Ulcers 128
Figure 3 152: TruSkin®: Study for the Treatment of Chronic Diabetic Foot Ulcers 129
Figure 3 153: NEOX® CORD 1K vs Standard of Care in Non-healing Diabetic Foot Ulcers (CONDUCT I) 129
Figure 3 154: DermACELL in Subjects With Chronic Wounds of the Lower Extremities 130
Figure 3 155: A Comparative Efficacy Study: Treatment for Non-healing Diabetic Foot Ulcers 130
Figure 3 156: A Longitudinal Study to Evaluate an Extracellular Matrix (MatriStem®) for the Treatment of Diabetic Foot Ulcers (M-S-DFU-RCT) 131
Figure 3 157: Grafix® DFU: Open-Label Extension Option to Evaluate Safety & Efficacy of Grafix® for Chronic Diabetic Foot Ulcers (DFU) 131
Figure 3 158: Mesenchymal Stem Cell Augmentation in Patients Undergoing Arthroscopic Rotator Cuff Repair 132
Figure 3 159: COMPREHENSIVE® REVERSE SHOULDER Mini BasePlate 132
Figure 3 160: Suture Anchor Comparison in Rotator Cuff Repairs 133
Figure 3 161: Allograft Reconstruction of Massive Rotator Cuff Tears vs Partial Repair Alone 133
Figure 3 162: Evaluation of the Healicoil Suture Anchor for Rotator Cuff Repair 134
Figure 3 163: Rotator Cuff Reconstruction With Xenologous Dermis-patch Augmentation and ACP® - Injection 134
Figure 3 164: Musculotendinous Tissue Repair Unit and Reinforcement (MTURR) 135
Figure 3 165: Pilot Study to Evaluate the Restore Orthobiologic Implant in Rotator Cuff Tear Repair 135
Figure 3 166: Prospective Study on Artelon® Tissue Reinforcement in Repair of Chronic Ruptures and Re-ruptures of the Achilles Tendon 136
Figure 3 167: Esthetic Outcomes Following Immediate Implant Combine With Soft Tissue Augmentation 136
Figure 3 168: Implant-Abutment Interface Design on Bone and Soft Tissue Levels Around Implants Placed Using Different Transcrestal Sinus Floor Elevation 137
Figure 3 169: Evaluation of Zimmer Puros® Allograft vs. Creos™ Allograft for Alveolar Ridge Preservation, Zimmer Biomet 137
Figure 3 170: A Volumetric Analysis of Soft and Hard Tissue Healing for Ridge Preservation and Socket Seal After Tooth Extraction 138
Figure 3 171: Ridge Preservation Following Tooth Extraction Using Two Mineralized Cancellous Bone Allografts, Zimmer Biomet 138
Figure 3 172: Evaluation of Subepithelial Connective Tissue Graft Versus Acellular Dermal Matrix With Tunnel Technique in Treatment of Multiple Gingival Recession 139
Figure 3 173: The Clinical Effect of Implant Placement With a Simultaneous Soft Tissue Allograft 139
Figure 3 174: Collagen Matrix With Tunnel Technique Compared to CTG for the Treatment of Periodontal Recession 140
Figure 3 175: Comparison of the Human Acellular Vessel (HAV) With ePTFE Grafts as Conduits for Hemodialysis 141
Figure 3 176: Feasibility Study of the TGI Adipose-derived Stromal Cell (ASC)-Coated ePTFE Vascular Graft (TGI-PVG-IDE) 141
Figure 3 177: Clinical Study of POSS-PCU Vascular Grafts for Vascular Access 142
Figure 3 178: Safety and Efficacy Study of Amniotic Membrane Patch to Treat Postoperative Atrial Fibrillation 142
Figure 3 179: Trial Comparison of Accuseal and Bovine Pericardial Patch During Endarterectomy 143
Figure 4 1: Dural Repair Market by Segment, U.S., 2013 – 2023 (US$M) 147
Figure 4 2: Total Dural Repair Market, U.S., 2013 – 2023 150
Figure 4 3: Allograft Dural Repair Market, U.S., 2013 – 2023 152
Figure 4 4: Xenograft Dural Repair Market, U.S., 2013 – 2023 154
Figure 4 5: Alloplast Dural Repair Market, U.S., 2013 – 2023 156
Figure 4 6: Drivers and Limiters, Dural Repair Market, U.S., 2016 159
Figure 4 7: Leading Competitors, Dural Repair Market, U.S., 2016 164
Figure 6 1: Press Release Summary 169

Companies Mentioned:
LifeCell
Organogenesis
C.R. Bard
Ethicon
Covidien
Arthrex
ASTORA
Wright Medical
Integra LifeSciences
Smith & Nephew
MiMedx
Boston Scientific
Systagenix
BioHorizons
Atrium Medical
Coloplast
Stryker
Cook Medical
Johnson & Johnson
Osiris
Soluble Systems
Synovis/Baxter
KCI
RTI Biologics
Geistlich
TEI
Zimmer Biomet
ACell
Aesculap/B. Braun
Gore Medical
Medtronic
Dentsply
Others include: Medline, MTF, WL Gore, Tutogen, Novus Scientific, Ariste Medical

License Types:

Single User License (PDF)

- This license allows for use of a publication by one person.
- This person may print out a single copy of the publication.
- This person can include information given in the publication in presentations and internal reports by providing full copyright credit to the publisher.
- This person cannot share the publication (or any information contained therein) with any other
person or persons.
- Unless a Enterprise License is purchased, a Single User License must be purchased for every person that wishes to use the publication within the same organization.
- Customers who infringe these license terms are liable for a Global license fee.

Site License (PDF)*

- This license allows for use of a publication by all users within one corporate location, e.g. a regional office.
- These users may print out a single copy of the publication.
- These users can include information given in the publication in presentations and internal reports by providing full copyright credit to the publisher.
- These users cannot share the publication (or any information contained therein) with any other person or persons outside the corporate location for which the publication is purchased.
- Unless a Enterprise License is purchased, a Site User License must be purchased for every corporate location by an organization that wishes to use the publication within the same organization.
- Customers who infringe these license terms are liable for a Global license fee.

Global License (PDF)*

- This license allows for use of a publication by unlimited users within the purchasing organization e.g. all employees of a single company.
- Each of these people may use the publication on any computer, and may print out the report, but may not share the publication (or any information contained therein) with any other person or persons outside of the organization.
- These employees of purchasing organization can include information given in the publication in presentations and internal reports by providing full copyright credit to the publisher.

*If Applicable.
What is drug pipeline research?
March 20

How to use market research to bring your idea to life?
March 11

How to gain business insights using syndicated market research?
March 10

Source URL: https://www.drugpipeline.net/idata-research/us-market-report-dural-repair-2017-medcore

Links
[1] https://www.drugpipeline.net/region/usa